

Design Check-In sdmay25-01 "ProJect ELM"

James Minardi, Eli Ripperda, Lindsey Wessel, Mason Inman

PROBLEM STATEMENT

PROBLEM

- People with mobility and cognitive impairments face many challenges including maintaining independence and safety.
- Lack of advanced wheelchair technologies, leaving gaps in autonomy, communication, etc.

OUR CLIENT

- Formerly volunteered to help with individuals with cerebral palsy and is motivated to help them further.
- Wants to develop assistive wheelchair tech with features including mobility assistance and real-time seizure detection.

OUR TEAM

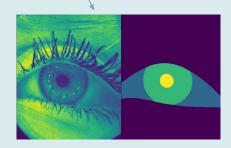
 Create a subsystem that detects, locates, and presents info on a user's eye in a camera.

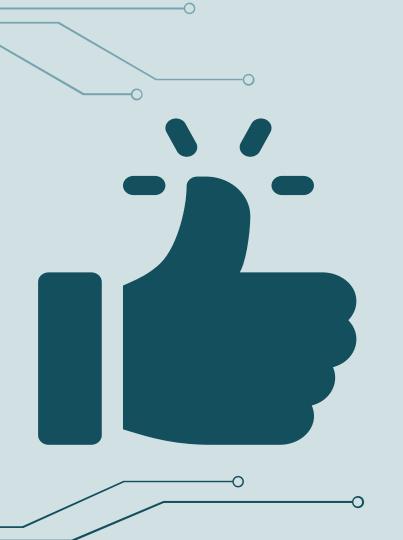
OBJECTIVE

Develop a fast and accurate pupil detection subsystem using machine learning algorithms on an FPGA to support our client's vision of advanced assistive technologies.

PROJECT OVERVIEW

SYSTEMS


- Camera
- Eye location algorithm
- Semantic segmentation ML model
- Ultra96 v2 FPGA
- Display


REQUIREMENTS

- Real-time
- Accurate and performant to [NDA] fps
- Display model outputs and debugging information

PROTOTYPING

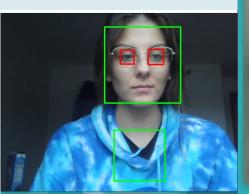
ROI PROTOTYPE

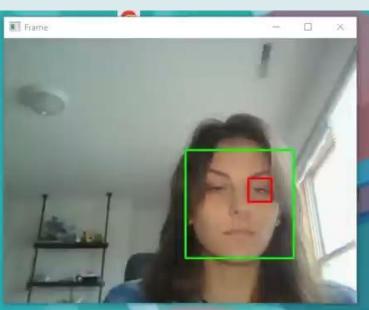
PURPOSE

Identify benefits and downsides of each algorithm (find best fit)

Learn how to improve accuracy and speed

REFLECTION

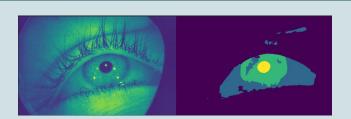

Detect eyes with glasses


Problems with glare over eye

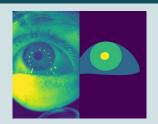
Problems with harsh backlight

Lacks Accuracy

Fast

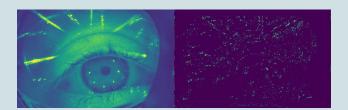

MODEL PROTOTYPE

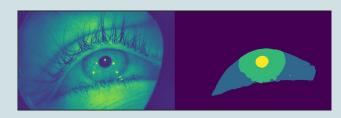
PURPOSE


 Familiarize with Open-Source Model

REFLECTION

- Accurate
- 4 channels (colors) is not needed





Trained + Cropped

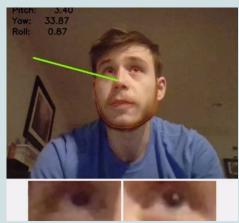
Epoch O

Epoch 5

ULTRA96v2 PROTOTYPE

PURPOSE


- Show the platform environment is able to run software from previous teams
- Show webcam video can be captured and displayed for our algorithms


NOTE

- Ultra96v2 dev board includes the FPGA
- Camera, sitting to right of board

LEARNINGS

 Ultra96v2 dev board is tedious to set up – there are still remaining environment setup steps for the Pynq and Python

Used existing demo application that determines head position from a webcam

NEXT STEPS

ROI SELECTION

- Decide which algorithm(s) to use.
- Implement chosen algorithm(s).

PRUNING

 Use Vitis-Al Tooling to Optimize and retrain the model.

INTEGRATION

 Combine all subsystems onto Ultra96v2.

CONCLUSION

As a result

of our given problem and current components of our project

We will

Increase the performance of an existing FPGA system

To achieve

Throughput high enough to make real-time decisions.

Linking to Our Client's Problem

This increase in data throughput will supplement our client's system, unlocking the ability to predict when end-users might have health-affecting events such as a seizure.

Thanks! Any questions?